UPSC Chemistry Syllabus 2020 for IAS Exam

UPSC Chemistry Syllabus 2020 for IAS Exam is provided by UPSC through the Civil Service Exam Notification. Chemistry is one of the many optional subjects that can be opted for the Civil Services Mains Exam. UPSC Chemistry Syllabus for Mains Exam consists of two papers for 250 marks each. Therefore, making a total of 500 marks.

The detailed UPSC Syllabus for Chemistry subject is given below: 


UPSC Chemistry Syllabus 2020 - Paper I

1. Atomic Structure: Heisenberg s uncertainty principle, Schrodinger wave equation (time-independent); Interpretation of wave function, particle in one-dimensional box, quantum numbers, hydrogen atom wave functions; Shapes of s, p and d orbitals.

2. Chemical Bonding: Ionic bond, characteristics of ionic compounds, lattice energy, Born-Haber cycle; covalent bond and its general characteristics, polarities of bonds in molecules and their dipole moments; Valence bond theory, concept of resonance and resonance energy; Molecular orbital theory (LCAO method); bonding in H2+, H2, He2+ to Ne2, NO, CO, HF, and CN; Comparison of valence bond and molecular orbital theories, bond order, bond strength, and bond length.

3. Solid State: Crystal systems; Designation of crystal faces, lattice structures, and unit cell; Bragg s law; X-ray diffraction by crystals; Close packing, radius ratio rules, calculation of some limiting radius ratio values; Structures of NaCl, ZnS, CsCl and CaF2; Stoichiometric and nonstoichiometric defects, impurity defects, semi-conductors.

4. The Gaseous State and Transport Phenomenon: Equation of state for real gases, intermolecular interactions, and critical phenomena and liquefaction of gases, Maxwell s distribution of speeds, intermolecular collisions, collisions on the wall and effusion; Thermal conductivity and viscosity of ideal gases.

5. Liquid State: Kelvin equation; Surface tension and surface energy, wetting and contact angle, interfacial tension and capillary action.

6. Thermodynamics: Work, heat and internal energy; first law of thermodynamics. Second law of thermodynamics; entropy as a state function, entropy changes in various processes, entropy reversibility and irreversibility, Free energy functions; Thermodynamic equation of state; Maxwell relations; Temperature, volume and pressure dependence of U, H, A, G, Cp, and Cv ± and; J-T effect and inversion temperature; criteria for equilibrium, relation between equilibrium constant and thermodynamic quantities; Nernst heat theorem, introductory idea of third law of thermodynamics.

7. Phase Equilibria and Solutions: Clausius-Clapeyron equation; phase diagram for a pure substance; phase equilibria in binary systems, partially miscible liquids upper and lower critical solution temperatures; partial molar quantities, their significance, and determination; excess thermodynamic functions and their determination.

8. Electrochemistry: Debye-Huckel theory of strong electrolytes and Debye-Huckel limiting Law for various equilibrium and transport properties. Galvanic cells, concentration cells; electrochemical series, measurement of e.m.f. of cells and its applications fuel cells and batteries. Processes at electrodes; double layer at the interface; the rate of charge transfer, current density; overpotential; electro-analytical techniques: Polarography, amperometry, ion-selective electrodes and their uses.

9. Chemical Kinetics: Differential and integral rate equations for zeroth, first, second and fractional order reactions; Rate equations involving reverse, parallel, consecutive and chain reactions; branching chain and explosions; effect of temperature and pressure on rate constant; Study of fast reactions by stop-flow and relaxation methods; Collisions and transition state theories.

10. Photochemistry: Absorption of light; decay of excited state by different routes; photochemical reactions between hydrogen and halogens and their quantum yields.

11. Surface Phenomena and Catalysis: Absorption from gases and solutions on solid adsorbents, Langmuir and B.E.T. adsorption isotherms; determination of surface area, characteristics and mechanism of reaction on heterogeneous catalysts.

12. Bio-inorganic Chemistry: Metal ions in biological systems and their role in ion transport across the membranes (molecular mechanism), oxygen uptake proteins, cytochromes and ferredoxins.

13. Coordination Compounds: (i) Bonding theories of metal complexes; Valence bond theory, crystal field theory and its modifications; applications of theories in the explanation of magnetism and electronic spectra of metal complexes. (ii) Isomerism in coordination compounds; IUPAC nomenclature of coordination compounds; stereochemistry of complexes with 4 and 6 coordination numbers; chelate effect and polynuclear complexes; trans effect and its theories; kinetics of substitution reactions in square-planer complexes; thermodynamic and kinetic stability of complexes. (iii) EAN rule, Synthesis structure and reactivity of metal carbonyls; carboxylate anions, carbonyl hydrides and metal nitrosyl compounds. (iv) Complexes with aromatic systems, synthesis, structure and bonding in metal olefin complexes, alkyne complexes and cyclopentadienyl complexes; coordinative unsaturation, oxidative addition reactions, insertion reactions, fluxional molecules and their characterization; Compounds with metal-metal bonds and metal atom clusters.

14. Main Group Chemistry: Boranes, borazines, phosphazenes and cyclic phosphazene, silicates and silicones, Interhalogen compounds; Sulphur nitrogen compounds, noble gas compounds.

15. General Chemistry off Block Elements: Lanthanides and actinides; separation, oxidation states, magnetic and spectral properties; lanthanide contraction.

UPSC Chemistry Syllabus 2020 - Paper II

1. Delocalized Covalent Bonding: Aromaticity, anti-aromaticity; annulenes, azulenes, tropolones, fulvenes, sydnones.

2. (i) Reaction Mechanisms: General methods (both kinetic and non-kinetic) of study of the mechanism of organic reactions: isotopic method, cross-over experiment, intermediate trapping, stereochemistry; the energy of activation; thermodynamic control and kinetic control of reactions. (ii) Reactive Intermediates: Generation, geometry, stability, and reactions of carbonium ions and carbanions, free radicals, carbenes, benzynes, and nitrenes. (iii) Substitution Reactions: SN1, SN2, and SNi mechanisms; neighboring group participation; electrophilic and nucleophilic reactions of aromatic compounds including heterocyclic compounds pyrrole, furan, thiophene and indole. (iv) Elimination Reactions: E1, E2 and E1cb mechanisms; orientation in E2 reactions Saytzeff and Hoffmann; pyrolytic syn elimination Chugaev and Cope eliminations. (v) Addition Reactions: Electrophilic addition to C=C and C=C; nucleophilic addition to C=0, C=N, conjugated olefins and carbonyls. (vi) Reactions and Rearrangements: (a) Pinacol-pinacolone, Hoffmann, Beckmann, Baeyer Villiger, Favorskii, Fries, Claisen, Cope, Stevens and WagnerMeerwein rearrangements. (b) Aldol condensation, Claisen condensation, Dieckmann, Perkin, Knoevenagel, Witting, Clemmensen, Wolff-Kishner, Cannizzaro and von Richter reactions; Stobbe, benzoin and acyloin condensations; Fischer indole synthesis, Skraup synthesis, Bischler-Napieralski, Sandmeyer, Reimer-Tiemann and Reformatsky reactions.

3. Pericyclic Reactions: Classification and examples; WoodwardHoffmann rules electrocyclic reactions, cycloaddition reactions [2+2 and 4+2] and sigmatropic shifts [1, 3; 3, 3 and 1, 5] FMO approach.

4. (i) Preparation and Properties of Polymers: Organic polymers polyethylene, polystyrene, polyvinyl chloride, teflon, nylon, terylene, synthetic and natural rubber. (ii) Biopolymers: Structure of proteins, DNA and RNA.

5. Synthetic Uses of Reagents: OsO4, HIO4, CrO3, Pb(OAc)4, SeO2, NBS, B2H6, Na-Liquid NH3, LiAlH4, NaBH4, n-BuLi and MCPBA.

6. Photochemistry: Photochemical reactions of simple organic compounds, excited and ground states, singlet and triplet states, Norrish-Type I and Type II reactions. 7. Spectroscopy: Principle and applications in structure elucidation: (i) Rotational: Diatomic molecules; isotopic substitution and rotational constants. (ii) Vibrational: Diatomic molecules, linear triatomic molecules, specific frequencies of functional groups in polyatomic molecules. (iii) Electronic: Singlet and triplet states; N * and * transitions; application to conjugated double bonds and conjugated carbonyls Woodward-Fieser rules; Charge transfer spectra. (iv) Nuclear Magnetic Resonance (1H NMR): Basic principle; chemical shift and spin-spin interaction and coupling constants. (v) Mass Spectrometry: Parent peak, base peak, metastable peak, McLafferty rearrangement.

7. Spectroscopy: Principle and applications in structure elucidation: (i) Rotational: Diatomic molecules; isotopic substitution and rotational constants. (ii) Vibrational: Diatomic molecules, linear triatomic molecules, specific frequencies of functional groups in polyatomic molecules. (iii) Electronic: Singlet and triplet states; N * and * transitions; application to conjugated double bonds and conjugated carbonyls Woodward-Fieser rules; Charge transfer spectra. (iv) Nuclear Magnetic Resonance (1H NMR): Basic principle; chemical shift and spin-spin interaction and coupling constants. (v) Mass Spectrometry: Parent peak, base peak, metastable peak, McLafferty rearrangement.


UPSC Optional Subject Syllabus

 

UPSC Literature Optional Syllabus

 

UPSC General Studies Syllabus

 

View All Online IAS Classes & Free Demos

    Talk to us for

    UPSC preparation support!









Options

Do you want to become an IAS officer like Saumya Sharma?
Study Online at  Neostencil Logo

Your Exam segments is being saved. Please wait....

Select Exam(s) you are interested in

IAS IES/GATE IIT-JEE NEET STATE PSC CSIR UGC NET OTHERS
please enter valid OTP